
PODG : A Secure Decentralized Cloud
Computing Based on Polkadot

Hang Yin Shunfan Zhou Jun Jiang

1 Introduction

Nowadays the security of the permissionless blockchain is typically guaranteed
by state replication over consensus algorithms. Though this approach works
well for blockchain, it also means that everything on the blockchain is public,
which brings a problem: confidential information cannot be handled by the
blockchain. The lack of confidentiality greatly limits the usage of blockchain in
processing sensitive business and user data. For example, stock traders usually
do not want to reveal their positions or order history. What’s more, all of the
privacy-related DApps on the Ethereum cannot comply with the General Data
Protection Regulation and thus will be prevented in European Union.

Several methodologies have been proposed to address the privacy problem.
Monero and Zcash implemented private transaction by ring signature [13] and
zk-SNARK [11] technology, but their methods can only provide privacy for cryp-
tocurrencies and are hard to be extended to general-purpose smart contracts.
MPC (Multi-Party Computing) can theoretically run arbitrary programs with-
out revealing intermediate states to the participants, with the expense of a per-
formance overhead of 106 times [9], which makes it impractical for real world
use cases.

A new approach is to utilize special hardware, i.e., Trusted Execution En-
vironment (TEE) [8]. TEE is a special area in some processors that provides a
higher level of security including isolated execution, code integration, and state
confidentiality. Naive TEE as a computing platform has several shortages, such
as the lack of a reliable time source and availability guarantee.

Ekiden [9] fixed these problems by introducing a TEE-blockchain hybrid
architecture and implemented a high performance confidential smart contract
platform. However, contracts in Ekiden are isolated, which means the contracts
cannot interoperate with each other, let alone external blockchains. Interoper-
ability is a keystone of modern smart contracts. For example, 8 of the top 10
contracts in Ethereum, the largest smart contract platform in the world, rely
on functions invocations or money transferring to at least one other contract.
Without interoperability, contracts cannot read information or call functions
from other smart contracts. What’s more, the use of self-defined tokens, one

1

RA Quote

TLS

signed by Intel

RA Quote

Users

Code

SGX Enclave

Figure 1: Intel SGX remote attestation procedure.

of the most common cases in smart contract usages, is unachievable if all the
contracts cannot access the token contract.

In this paper, we present PODG , a novel cross-chain interoperable confide
ntial smart contract as a Polkadot parachain [10]. We intro-duce an Event
Sourcing / Command Query Responsibility Segregation [4, 3]architecture int
o a TEE-blockchain hybrid system to achieve cross-contract and cross-chain int
eroperability for confidential smart contracts. We further de-signed a Libra
-Polkadot bridge to implement a privacy-preserving Libra Coin by confidentia
l contract.

2 Background

2.1 Intel SGX: A TEE Implementation

Intel SGX [6] is a popular implementation of TEE. It runs code inside a special
“Enclave” so that the execution of the code is deterministic, i.e., not affected
by other processes or underlying operating system, and the intermediate states
is not leaked. In a properly set up system, Intel SGX can defend the attacks
from the OS layer and hardware layer.

To ensure the execution is finished as expected inside an enclave, a proof
can be generated according to a protocol called Remote Attestation. The
hardware can generate an attestation quote based on the details of hardware,
firmware, the code being executed inside the enclave, and other user-defined
data produced by the code. The quote is signed by the trusted hardware with
credentials embedded during the production process.

Next, the generated attestation quote is sent to the Intel Remote Attestation
Service. Intel will sign the quote iff the signing credentials are valid. As each
credential is uniquely bound to an Intel CPU unit, fake attestation quotes will

2

never pass the Remote Attestation Service check.
Finally, the attestation quote signed by Intel serves as the proof of a success-

ful execution. It proves that specific code has been run inside an SGX enclave
and produces certain output, which implies the confidentiality and the correct-
ness of the execution. The proof can be published and validated by anyone with
generic hardware.

Intel SGX and the Remote Attestation protocol is the foundation of confiden-
tial contract. Except for Intel SGX, there are also alternative implementation
choices like AMD SEV [1] and ARM TrustZone [2].

2.2 Event Sourcing and CQRS

Event Sourcing is a software design pattern. Instead of storing the latest state of
the data, the events causing state transition are recorded in an append-only log.
The events are timestamped and can be replayed to reconstruct the state of any
time. Since the events are timestamped, the state of the system is deterministic.
Command Query Responsibility Segregation (CQRS) is a design pattern by
which the read operations and write operations are handled separately. In a
CQRS and Event Sourcing combined system, the write operations are recorded
as the events and the read operations can be served by the current view of the
state. This pattern make a system easy to scale up and avoid conflicts.

For native CPU performance and better security, each confidential contract
is bound to only a single or a small set of TEEs as the executor. By this design,
the contract state is isolated from each other without consistency guarantee. It
becomes a trouble for cross-contract and even cross-chain interoperability.

While it’s hard to keep a strong consistency over the states, contracts can
still communicate by passing messages to each other on the premise that state
transition is still deterministic. In an Event Sourcing / CQRS design, the com-
mands can be initiated from users or contracts and are timestamped on the
blockchain strictly. It guarantees the global state is deterministic and therefore
enables message passing between contracts. Message passing is a primitive to
implement higher level interoperability like contract invocation and token trans-
ferring. The read-only operations are not timestamped for better performance.

3 Confidential Contract

PODG aims to build a platform for general-purpose privacy-preserving Turing-
Complete smart contracts. The basic requirements for such a platform

could be as follows.

• Code Integrity. Anyone can verify that an output is produced by a specific

• Confidentiality. Unlike the existing blockchains for smart contracts, PODG
 avoids the leakage of any input, output, or intermediate state of con-
fidential contract. Only authorized queries to the contract will be answered.

smart contract published on the blockchain.

3

• State Consistency. Anyone can verify that an execution happened at a
certain blockchain height, which implies the output of the execution is subject
to a certain chain state.

• Availability. There must not be a single point of failure such as disconnec-
tion of the miner.

• Interoperability. Contracts can interoperate with each other and external
blockchains.

The existing TEE solutions, e.g., Intel SGX, can only prevent the leakage

of sensitive information during the execution of isolated programs, and provide

no guarantee on availability or verification of input data. Thus it requires a

carefully-designed infrastructure to integrate TEE into blockchain to meet the

requirements above.
We are going to introduce the design of PODG and how it fulfills the abov

e requirements in the following sections.

3.1 Abstraction of Confidential Contract

A typical smart contract can be regarded as a state machine of a current state
sn and a state transition function f , which takes input event en and last state
sn−1 to produce the latest state sn:

sn = f(sn−1, en)

Since the state transition process happens inside the enclave, any of its
intermediate states remains invisible to outside. We can further encrypt the
reached state and input event to prevent the attackers from inferring the internal
state of contract with event replay.

Let csn be the cipher of sn and cen be the cipher of en, the state transition
function of a confidential contract p can be represented as:

csn = p(csn−1, cen) (1)

p(csn−1, cen) = Enc

(
f
(
Dec(csn−1),Dec(cen)

))
(2)

where Enc and Dec can be carefully-chosen symmetric encryption and de-
cryption functions subject to the contract.

Unlike the existing smart contract, a confidential contract doesn’t expose
any information outside the enclave by default. To answer authorized queries,
we introduce a query function q which takes the current encrypted state csn,
query parameters paras and user’s identity I (usually a pubkey) as input and
returns the response r:

r = q(csn, paras, I)

The confidential contract must first validate the identity of the user and
then respond to her query. Apart from the queries from users, the contract may

4

PODG

 Miners

Gatekeepers

Polkadot
Blockchain

Figure 2: Roles in the protocol.

also accept a special query producing side effects. The side effects include the
egressing data that can be posted back to the blockchain by miners.

4 The Protocol

There are a few roles involved in the protocol as shown in Figure 2.

• Users. Users invoke, query and deploy smart contracts. Users interact with
smart contracts via Blockchain and Worker Nodes. They can verify the
blockchain as well as the cryptographic evidence on the blockchain indepen-
dently by running a light client or full node. No special hardware, i.e., TEE,
is needed for users to use the confidential contracts.

• Worker Nodes. Worker Nodes run confidential contracts in TEE-compatible
hardwares. Worker Nodes are off-chain. In each node, a special program
called pRuntime is deployed to the enclave. The runtime has a builtin VM to
run contracts. It also cooperates with the blockchain to support the contracts
in full life cycle. Worker Nodes can be further divided into three roles:

• Genesis Node. Genesis Node helps bootstrap the and set up
the cryptographic configuration. There’s only one Genesis Node and it’s
destroyed after the launch of PODG .

• Gatekeepers. Gatekeepers manage the secrets to ensure the availability
and security of the . Gatekeepers are dynamically elected on the
blockchain and they stake a large amount of PODG token. They are re
-warded for being online and slashed in case of misbehavior because there

5

must be a certain number of functional Gatekeepers running at any time.

• Remote Attestation Service. Remote Attestation Service is a public ser-
vice to validate if a Worker Node has deployed pRuntime correctly. The
cryptographic evidence produced by the service can prove a certain output is
produced by pRuntime running inside a TEE. IAS [5] is Intel SGX’s remote

• Miners. Miners execute the confidential contracts. They get paid by
providing their computing resources to the users. Unlike Gatekeepers,
Miners only need to stake a small amount of the PODG token and can
join and exit the as they want.

attestation service implementation.
• Blockchain. Blockchain is the backbone of PODG . It stores the

identities of the Worker Nodes, the published confidential contracts, the en-
crypted contract state, and the invocation transactions from users and other
blockchains. When plugged into a Polkadot parachain slot, it’s capable to
interoperate with other blockchains through the Polkadot relay chain.

4.1 System Design

We first propose an important property which works as the basis of the following

system design.
All worker nodes are non-Byzantine nodes. As illustrated above, each

worker node runs a special program pRuntime in its TEE. The pRuntime, as

the name suggests, works as the runtime environment for confidential contracts.
It exports a set of APIs for contracts to access the state resources, manages

the connections to the blockchain and answers user queries securely. pRuntime

implements the PODG protocol described in this paper. Since the integrity
of pRuntime is guaranteed by the remote attestation service, this iso-lation pr
omises that no Byzantine fault can happen unless both the TEE and pRuntim

e are compromised, and an adversarial worker node can only launch a Denial-o
f-Service attack, which can be further detected by our responsiveness monitor
ing protocol.

In our system, the executors, i.e., miners, are stateless, which means the
latest state of a confidential contract has to be got by sequentially executing all
the input events on the blockchain or from a cached contract state and the events
after that. All the inputs have to be first published to the blockchain and in
this way, the blockchain works as the canonical source of contract inputs, which
implies Event Sourcing design pattern. We further utilized the idea of CQRS
in the design of the protocol to accelerate the users’ queries to the contracts.

pRuntime maintains a set of secrets durning its life cycle. Contract states
are encrypted and checkpointed on the blockchain with a symmetric key. Each
pRuntime registers its identity on the blockchain and establishes secure connec-
tions to users with an asymmetric key pair. Since each pRuntime registers itself
on the blockchain, any user can validate its identity. These secrets never go
outside the pRuntime.

6

Signed
RA Quote

RA Quotes

Intel Root Cert
Hardware
Firmware

Custom data: commit to
the Enclave Identity

Code

pRuntime Identity

TLSUsers
Contract

pRuntime

Contract Deploy Encrypted
StateRegistryCode

Blockchain

Figure 3: RA and communication.

4.2 Node Registration

All the Worker Nodes are required to be registered on the blockchain before
participating in mining or Gatekeeper election.

Remote attestation provides a building block to verify the execution as well
as its output of a certain code inside the enclave. However, running such attes-
tation on each execution is time inefficient. In PODG we adopt a better protocol
. The attestation measures the pRuntime instance and the generated unique i
dentity during the registration, instead of each execution. In this way,a single
attestation is sufficient to ensure the future behavior of the pRuntime.

1. The host program of the worker node n (i.e.Miner or Gatekeeper) calls
pRuntime.GetIdentity to generate a key pair as an identity In(pkn, skn).
skn is kept inside the enclave and pkn is revealed to the host.

2. The host calls pRuntime.GetRAQuote to generate a remote attestation
quote q with the commitment to pkn and other necessary metadata.

3. The host submits q to Remote Attestation Service and get the signed
quotes qsigned.

4. The host submits (qsigned, pkn) to the blockchain. The blockchain then
accepts and stores the information after validation.

The registered pRuntime instances are non-Byzantine. The pRuntime in-
stance and the generated identity is measured by the attestation. It implies
pRuntime runs in a TEE and the identity is generated securely. Since the
privkey is unknown to any party expect the instance, nobody can pretend to be
a registered pRuntime.

With the identity registered, a TLS-like channel between the requester and
the target pRuntime can be established. The identities published on the blockchain
serve as the PKI to avoid MitM attack. As the pRuntime is non-Byzantine in

7

such a communication channel, the pRuntime can be trusted without further
need of remote attestation. This trick improves the efficiency and flexibility of
code execution in the runtime.

The metadata contains other necessary information, for example, the
endpoint of the node like libp2p multiaddrs. The registration has an ex-
piration date to prevent vulnerabilities discovered in the future. Worker nodes

can renew it by redo the registration process including generating a new identity

and do the remote attestation.

4.3 State Encryption

Confidential contract runs on pRuntime and the states are persisted on the

blockchain to ensure the availability. As the information on the blockchain are

public, the saved states have to be encrypted. In PODG , each contract (ci) is a
ssociated with a symmetric key called Contract Key (kci).

Contract keys are generated by Gatekeepers inside pRuntime. To run a
contract, a registered miner should get the corresponding contract key from
Gatekeepers. The miner reads the latest contract states and decrypt it with
the contract key during initialization. Then the updated states are encrypted
and saved to the blockchain in the future. Gatekeepers hold the contract keys
as a part of their states. Gatekeepers share a symmetric key called Root Key
(kr). The Gatekeeper states are also encrypted and saved to the blockchain like
miners. All the keys are used by and kept in pRuntime.

The details of key management are discussed in below subsections. We fur-
ther propose a few improvements including key rotation (in “Key Rotation”
subsection) and a distributed key generation (DKG) scheme in “Open Ques-
tions” section.

4.4 Blockchain Launch

In the blockchain launch phase, the blockchain will load the initial distribution
of the native token and start the election of Gatekeepers. A Genesis Node assists
the launch of the blockchain.

1. Before the genesis block, the Genesis Node runs pRuntime.Bootstrap to
generate a key pair as the identity of the node, and a symmetric key,

namely Genesis Identity Ig(pkg, skg) and the genesis Root Key kr
(0)

. The

runtime reveals pkg but keeps skg and kr
(0)

privately.

2. Start the blockchain with pkg. In this stage pkg is published in the genesis
block and is used for other worker nodes to establish secure channels to

the Genesis Node. kr
(0)

is kept inside the Genesis Node and is used to

store secrets necessary to run the on the blockchain. The initial
native token distribution is loaded in the genesis block.

8

3. The blockchain is at pre-launch phase after the genesis block. Governance
module is enabled but other modules including confidential contract are
still disabled until the Gatekeepers are elected.

4. Worker Nodes who want to participate in Gatekeeper election can fol-
low the Node Registration scheme to register their identities on the
blockchain. Then ngatekeepers (a chain parameter between tens to hun-
dreds) Gatekeepers will be elected during the pre-launch phase. This can
be done on-chain via an Polkadot-style NPoS validator election (see Ap-
pendix II for details).

5. When the election is finished, the Gatekeepers send a request to the Gen-

esis Node for kr
(0)

through a TLS connection. The Genesis Node only
answers the requests from the selected Gatekeeper. Gatekeepers confirms
their readiness the on the blockchain.

6. The Genesis Node retires and self destroys when it sees the confirmations
of the Gatekeepers from the blockchain. In case there are unresponsive
Gatekeepers, the election will expire and restart after the deadline.

So far Gatekeepers have their identity registered on the blockchain and kr
(0)

has been distributed to all the Gatekeepers’ runtime. Then kr
(0)

will be used to
deploy nodes and contracts in the future.

Periodical key rotation is necessary for forward secrecy. The root key at era

n is denoted by kr
(n)

. We will discuss the details in “Key Rotation” subsection.

4.5 Deploy Worker Nodes

Both miners and Gatekeepers have to follow the “Node Registration” scheme

to join the . The protocol ensures the nodes are non-Byzantine. So

we only consider responsiveness failures. To ensure the service quality, all the

worker nodes must stake a certain amount of the PODG token and could be
 slashed once it fails to meet the responsive requirements. We will discuss the
 details about staking and monitoring in “Responsiveness Monitoring” section.

As Gatekeepers store the root key and need to be always online, they have to
meet a higher standard and need to stake a larger amount. They are rewarded
for keeping online and could be slashed otherwise.

4.6 Deploy the Contract

The bytecode of the compiled contract is published on the blockchain and then
loaded by a user-specified miner to its pRuntime. The Gatekeepers generate a
symmetric encryption key for each newly published contract. The key is shared
with the corresponding pRuntime for state encryption. More specifically:

1. The developer publish the contract ci to the blockchain

9

2. Once Gatekeepers notice the publish of ci, they generate a corresponding
contract key kci for contract states encryption.

3. Gatekeepers save kci to the blockchain as a part of the chainstate en-

crypted with Root Key k
(n)
r

4. The developer finds an available miner to load the contract. The developer
can either run his miner so that no extra fee is needed, or rent one from
a resource market (see “Economic Design Paper” for more details).

5. The miner runtime connects to Gatekeeper through a secure connection
and asks for kci by pRuntime.GetContractKey.

The miner’s pRuntime will use kci to encrypt the contract state and save
it to the blockchain periodically. We will discuss the details in “Execute the
Contract” and “State Recover” section.

4.7 Key Rotation

The Gatekeepers are re-elected in each era according to the election rule (Ap-
pendix II). While rotating the Gatekeepers, the root key is also rotated. Let
Gn−1 and Gn be the Gatekeepers set before and after the election at era n. The
root key will be rotated as follows:

1. Gn is elected on-chain by the governance module in the last block of each
era. Simultaneously two leaders ln−1 ∈ Gn−1 and ln ∈ Gn are randomly
chosen. The randomness comes from the random beacon in the block.

2. Any communication between miners and Gatekeepers is blocked until the
key rotation is done.

3. Once the block is finalized, ln−1 and ln collaboratively generate the next

root key k
(n)
r by a DH-like key exchange protocol with salts. ln−1 de-

crypts the Gatekeeper states and re-encrypt with k
(n)
r and save it to the

blockchain. ln broadcasts k
(n)
r to other members in Gn by a secure commu-

nication channel. Gn members will confirm the readiness on-chain when
they received k

(n)
r .

4. Once all the Gn members have confirmed and ln−1 has updated the Gate-
keeper states, the blockchain will generate a “Key Rotation Ready” event
so that miners can resume the communication with the new Gatekeepers.
Simultaneously the Gn−1 members who are not still in Gn will notice the
event and perform self destruction.

5. There’s an expiration time for the key rotation procedure in case of the un-
responsiveness. In such case, the unresponsive Gatekeepers will be slashed
and the procedure should start over.

10

Enclave

ɣ

ɢ

ɡ

Side-Eff

Egressingɠ Events

ect

Chainview

Ingressive
Events

Polkadot Relay Chain

Users

Runtime

PODG

Figure 4: Execute the contract.

All the off-chain key management and encryption is handled by the pRuntime
of the Gatekeepers.

The key rotation protocol starts from the first block in an era and ends
after the final on-chain confirmation. Durning this period no new contract
can be deployed to the miners because the communication between miners and
Gatekeepers is blocked. However the delay caused by the protocol is trivial
compared with the length of an era. In the best case, the delay is 2 round-trip-
time (two on-chain confirmations).

Contract keys can be rotated in a simpler way. The miner generates a new
contract key and re-encrypt the states with the new key. Then it can send the
new contract key to Gatekeepers in a secure channel, and save the states to the
blockchain. The two actions are combined in a single transaction to make then
atomic.

Root key and contract key rotation ensures the forward secrecy of the confi-
dential state (for both Gatekeeper state and contracts state). The keys for the
obsolete data are destroyed once the rotation is done.

4.8 Execute the Contract

We adopt an Event Sourcing / CQRS style architecture for the contract execu-
tion. Read queries and write commands are segregated.

The contract state is determined by the write commands which have multiple
sources: user invocations, blockchain events, and ingressive messages from the
relay chain. In a naive design, we ask all the write commands to be recorded ex-
plicitly on the blockchain. The commands are denoted by Ingressive Events to
pRuntime. As the events on the blockchain are ordered naturally, the blockchain
becomes a canonical source of events.

1. The miner (host) ingests the ingressive events to the runtime by calling

11

pRuntime.SyncBlockchain. The incoming events are paired with cryp-
tographic evidence which is validated by a light-weight Substrate client
inside pRuntime. It ensures the integrity of the incoming events.

2. The runtime picks out the events targeting the contract deployed inside
and feeds the contract. The execution of the contract produces a view of
the Chainstate, namely Chainview

3. At any time, users can query Chainview by pRuntime.Query. The iden-
tity of the caller is attached to the queries so that the contract can decide
whether to answer or not based on its customized authorization policy.
The response to the query includes the query result as well as a commit-
ment to the current blockchain state (e.g. height) and the contract state.
In other words, all the outputs are subject to a certain blockchain state.

4. The runtime also produces various side-effects which is accessible by pRuntime.DumpSideEffect.
A basic kind of side-effect is the encrypted contract state update pro-
duced periodically by pRuntime. With the full contract state, a new miner
doesn’t need to sync the data by replaying the entire blockchain history.
Another kind of side-effects is outgoing messages targeting other contracts
or blockchains, namely Egressing Events. The ability to post messages
to external entities is the building block for contract interoperability.
The submitted events are eventually dispatched to the target contract,
or other blockchains by the Polkadot ICMP (Interchain Message Pass-
ing, https://research.web3.foundation/en/latest/polkadot/ICMP/). Min-
ers (host) are responsible to post the side-effects back to the blockchain.

To invoke a contract the user needs to generate a shared secret key with
the miner who runs the contract. This can be done via a non-interactive Diffie-
Hellman key exchange scheme with her private key and the miner’s registered
public key [12]. The key is used for future communication and then the user
can submit the encrypted payload to the blockchain. The invocation events are
processed by pRuntime once they arrive at the miner node.

As invocation payloads are included in a block, the blockchain is naturally
a canonical source of events. All the contract invocations initiated by users,
smart contracts, and other blockchains are timestamped and treated equally by
the executor. It therefore makes a unified interface for contract interoperability.

The downside of the architecture is that the confirmation of the commands
happens after the confirmation of the block. The performance of the blockchain
becomes the bottleneck for contract invocations. However, the read-only queries
are made into the runtime directly and the performance is not bounded by the
blockchain. This is possible because the queries don’t modify the contract state.

Miners are responsible to ensure the communication between pRuntime and
the blockchain. A monitoring scheme is needed to ensure the connectivity. In
the worst case (e.g.miner shutdown) the contract execution can be resumed by
another miner.

12

4.9 State Recover

A single miner is sufficient to run a contract. Though miners are incentivized to

run contracts in the long term, the miner may still becomes unresponsive due

to or power outage rarely. In such a case another miner can recover the save
d state from the blockchain and resume execution.

As mentioned in section “Execute the Contract”, one of the side-effects pro-
duced by pRuntime is the periodical contract state update. The dumped state is
encrypted by kci and stored on the blockchain. In the case of miner unavailable,
a new miner can recover the latest dumped contract state from the blockchain
and decrypt it with kci . After recovering the state, the runtime can further
replay the rest of the events on the blockchain until reaches the chain tip.

4.10 Responsiveness Monitoring

Both Gatekeepers and miners are required to keep the responsiveness to keep

the functionality of PODG . Gatekeepers have to maintain a high level of
responsiveness because the root key is kept inside the Gatekeepers runtime and

must be available at any time. As long as Gatekeepers can serve the contract key

for miners, the availability of the contracts can be guaranteed. So unresponsive

miners are not as harmful as unresponsive Gatekeepers to the system.
We adopt a Polkadot-like unresponsiveness detection algorithm [7]. Both

Gatekeepers and miners produce side-effects by their runtime. They have to at
least post the state updates periodically to the blockchain within an interval.
So all the submitted side-effects can be used as a counter of the online activities.
Then we can determine if a node n is unresponsive in an era by

cn <
1

4
max cn
n′

′

where cn is the activity counter for node n and n′ is all the connected worker
nodes in the era. For the detailed design of slash, please refer to Economic
Design Paper.

5 Open Question

Security improvements:

• Alternative TEE hardware: Though we use Intel SGX as the reference for the
current design, we don’t make any assumptions about the hardware. Potential
TEE hardware includes AMD SEV, ARM Turstzone, and some open-source
implementations in progress. When we support any alternatives the different
TEE can work together transparently.

• Threshold key sharing on Gatekeeper root keys: The confidentiality of all the
confidential contracts is derived from the root key. However root keys are
replicated among all the Gatekeepers in current design, meaning a compro-
mised TEE could compromise the whole system. A more robust ways is to

13

apply a threshold secret sharing scheme (e.g. Shamir’s) on the root key. A
distributed key generation scheme (DKG) can be used instead of selecting a
leader to generate the key in the key rotation protocol.

• Contract key backup by secret sharing scheme: To avoid catastrophes where
Intel SGX breaks entirely (e.g. Intel bans all the Remote Attestation request
from our side), we can utilize a secret sharing scheme to distribute the Root
Key to the Gatekeepers, or maybe two generations of the Gatekeepers. In such
a case, we can wait for the deployment of an alternative TEE system. Then
the secret holders can collaborate to ingest the key to recover the execution
of PODG .

Optimizations:

• Redundant miners for a contract: Currently one contract is only associated
with one miner. The state recovery still takes some time though the availabil-
ity is guaranteed. With ¿1 miners, as the contract execution is deterministic,
the miners can compete to run the contract and checkpoint the states on the
blockchain. The blockchain can always accept new states and reject redun-
dant submissions.

• State storage prune
• Layer 2 state sharing

References

[1] Amd secure encrypted virtualization (sev). https://developer.amd.com/
sev/.

[2] Arm trustzone technology. https://developer.arm.com/ip-products/

security-ip/trustzone.

[3] Command and query responsibility segregation (cqrs) pattern. https://

docs.microsoft.com/en-us/azure/architecture/patterns/cqrs.

[4] Event sourcing design pattern. https://docs.microsoft.com/en-us/

azure/architecture/patterns/event-sourcing.

[5] Intel sgx: Remote attestation. https://software.intel.com/en-us/

sgx/attestation-services.

[6] Intel software guard extensions. https://www.intel.com/content/

www/us/en/architecture-and-technology/software-guard-

extensions.html, 2019.

[7] Polkadot slashing mechanisms. https://research.web3.foundation/en/
latest/polkadot/slashing/amounts/, 2019.

[8] Trusted execution environment. https://en.wikipedia.org/wiki/

Trusted_execution_environment, 2019.

14

[9] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes,
Noah Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden: A
platform for confidentiality-preserving, trustworthy, and performant smart
contracts. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 185–200. IEEE, 2019.

[10] Wood Gavin. Polkadot: Vision for a heterogeneous multi-chain framework.
2016.

[11] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. In 2014 IEEE Symposium on Security and
Privacy, pages 459–474. IEEE, 2014.

[12] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl.
Distributed key generation with ethereum smart contracts.

[13] Nicolas Van Saberhagen. Cryptonote v 2.0. https://cryptonote.org/

whitepaper.pdf, 2013.

15

